LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G.DEGREE EXAMINATION - ALLIED

SECOND SEMESTER - APRIL 2019
ST 2104- BUSINESS STATISTICS

Date: 11-04-2019 \square

SECTION - A

Answer All the Questions

1. Write any four characteristics of a good average.
2. An aeroplane covers the four sides of a square at speeds of $1000,2000,3000$ and $4000 \mathrm{~km} / \mathrm{hr}$ respectively. What is the overall average speed?
3. Define Range and find the range for the following data $200,210,208,160,220,250$.
4. Provide the formula for combined mean and Standard Deviation.
5. Give any four properties of regression coefficient.
6. What is the purpose of time series analysis?
7. Distinguish between additive and multiplicative model for time series analysis.
8. Define objective function and constraints in LPP.
9. State the difference between feasible and optimal solution.
10. What do you meant by Zero-sum game?

SECTION -B

Answer any five questions

11. The number of days that students were missing from school due to sickness in one year was recorded.

No of days off sick	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
Frequency	12	11	10	4	3

Find mean deviation about arithmetic mean.
12. Using Karl Pearson's coefficient of skewness determines the nature of the following frequency distribution.

Size ofItem	Frequency
$20-40$	7
$40-60$	1
$60-80$	3
$80-100$	1
$100-120$	5

13. Calculate the Pearson's coefficient of correlation fromthe following data:

$X:$	75	88	95	70	60	80	81	50
$Y:$	120	134	150	115	110	140	142	100

14. Find two regression equations for the following bivariate data. Estimate Y when X is 850 .

	X	Y	
600		1,250	
	630		1,100
720		1,300	
750		1,350	
800		1,500	

15. Using three-yearly moving averages, determine the trend values for the following data.

Year	Production (in ‘000tonnes)	Year	Production (in ‘000tonnes)
2004	21	2009	22
2005	22	2010	25
2006	23	2011	26
2007	25	2012	27
2008	24	2013	26

16. Solve the following linear programming problem by graphical method

$$
\begin{gathered}
\text { Maximize } \mathrm{z}=-\mathrm{x}_{1}+\mathrm{x}_{2} \\
\text { Subject to the constraints } \\
5 \mathrm{x}_{1}+10 \mathrm{x}_{2} \leq 50 \\
\mathrm{x}_{1}+\mathrm{x}_{2} \geq 1 \\
\mathrm{x}_{2} \leq 4 \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 .
\end{gathered}
$$

17. Compute the seasonal index from the following data by the method of simple averages.

Year	Jan	Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
2009	46	45	44	46	45	47	46	43	40	40	41	45
2010	45	44	43	46	46	45	47	42	43	42	43	44
2011	42	41	40	44	45	45	46	43	41	40	42	45

18. By graphical method solve the game with pay-off matrix

Player B

Player $A\left[\begin{array}{cc}-1 & 0 \\ 0 & 4 \\ -4 & 3 \\ 2 & -5\end{array}\right]$

SECTION -C

19. Calculate first four central moments. Hence compute β_{1} and β_{2}.Also comment upon the nature of the frequency distribution.

Marks in statistics	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-60$
No. of students	18	22	30	42	40	38	22	14

20. a)A study of wheat prices at two cities yielded the following data:

	City A	City B
Average Price	Rs 2,463	Rs 2,797
Standard Deviation	Rs 0.326	Rs 0.207

Coefficientofcorrelationris0.774.Estimatefromtheabovedatathemostlikely price of wheat (i)at City A corresponding to the price of Rs 2,334 at City B
(iiat city B corresponding to the price of Rs 3.052 at City A
b) The following distribution is relating to marks obtained by students in an examination.Find standard deviation.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-$ 100
No. of students	1	3	6	10	12	11	6	3	2	1

21. Find the seasonal indices by Ratio to Trend method from the data given below.

Year	$1^{\text {st }}$ Quarter	$2^{\text {nd }}$ Quarter	$3^{\text {rd }}$ Quarter	$4^{\text {th }}$ Quarter
2008	34	54	38	38
2009	36	60	52	48
2010	40	58	56	52
2011	52	76	64	58
2012	70	90	88	84

22. Obtain an Initial Basic Feasible Solution to the following transportation problem by
(i). North-West corner rule (ii) Least cost method and (iii) Vogel's approximation methods.

	D	E	F	G	Availability
A	6	4	1	5	14
B	8	9	2	7	16
C	4	3	6	2	5
Requirement	6	10	15	4	

