## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

**U.G.**DEGREE EXAMINATION – **ALLIED** 

SECOND SEMESTER – APRIL 2019

**ST 2104– BUSINESS STATISTICS** 

**SECTION – A** 

Date: 11-04-2019 Time: 09:00-12:00

### Answer All the Questions

- 1. Write any four characteristics of a good average.
- 2. An aeroplane covers the four sides of a square at speeds of 1000, 2000, 3000 and 4000 km/hr respectively. What is the overall average speed?
- 3. Define Range and find the range for the following data 200, 210,208,160,220,250.

Dept. No.

- 4. Provide the formula for combined mean and Standard Deviation.
- 5. Give any four properties of regression coefficient.
- 6. What is the purpose of time series analysis?
- 7. Distinguish between additive and multiplicative model for time series analysis.
- 8. Define objective function and constraints in LPP.
- 9. State the difference between feasible and optimal solution.
- 10. What do you meant by Zero-sum game?

#### **SECTION – B**

### Answer any five questions

11. The number of days that students were missing from school due to sickness in one year was recorded.

| No of days off | 1-5 | 6-10 | 11-15 | 16-20 | 21-25 |
|----------------|-----|------|-------|-------|-------|
| sick           |     |      |       |       |       |
| Frequency      | 12  | 11   | 10    | 4     | 3     |

Find mean deviation about arithmetic mean.

12. Using Karl Pearson's coefficient of skewness determines the nature of the following frequency distribution.

| Size ofItem | Frequency |
|-------------|-----------|
| 20-40       | 7         |
| 40-60       | 1         |
| 60-80       | 3         |
| 80-100      | 1         |
| 100-120     | 5         |



Max. : 100 Marks

 $(10 \ge 2 = 20)$ 

 $(5 \times 8 = 40)$ 

| 13. | Calculate | the Pe | arson's | coefficient | of co | orrelation | fromthe | following | data: |
|-----|-----------|--------|---------|-------------|-------|------------|---------|-----------|-------|
|-----|-----------|--------|---------|-------------|-------|------------|---------|-----------|-------|

| <i>X</i> : | 75  | 88  | 95  | 70  | 60  | 80  | 81  | 50  |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| <i>Y</i> : | 120 | 134 | 150 | 115 | 110 | 140 | 142 | 100 |

14. Find two regression equations for the following bivariate data. Estimate Y when X is 850.

|     | Х   | Y     |       |
|-----|-----|-------|-------|
| 600 |     | 1,250 |       |
|     | 630 |       | 1,100 |
| 720 |     | 1,300 |       |
| 750 |     | 1,350 |       |
| 800 |     | 1,500 |       |

15. Using three-yearly moving averages, determine the trend values for the following data.

| Year | (in '000tonnes) | Year | (in '000tonnes) |  |
|------|-----------------|------|-----------------|--|
| 2004 | 21              | 2009 | 22              |  |
| 2005 | 22              | 2010 | 25              |  |
| 2006 | 23              | 2011 | 26              |  |
| 2007 | 25              | 2012 | 27              |  |
| 2008 | 24              | 2013 | 26              |  |
|      |                 |      |                 |  |

16. Solve the following linear programming problem by graphical method

 $\begin{array}{l} \text{Maximize } z = - \, x_1 + x_2 \\ \text{Subject to the constraints} \\ 5 x_1 + 10 x_2 \quad 50 \\ x_1 + \, x_2 \quad 1 \\ x_2 \quad 4 \\ x_1 \, , \, x_2 \quad 0. \end{array}$ 

17. Compute the seasonal index from the following data by the method of simple averages.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Νου | Dec |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2009 | 46  | 45  | 44  | 46  | 45  | 47  | 46  | 43  | 40  | 40  | 41  | 45  |
| 2010 | 45  | 44  | 43  | 46  | 46  | 45  | 47  | 42  | 43  | 42  | 43  | 44  |
| 2011 | 42  | 41  | 40  | 44  | 45  | 45  | 46  | 43  | 41  | 40  | 42  | 45  |

18. By graphical method solve the game with pay-off matrix

Player B  $\begin{bmatrix} -1 & 0 \\ 0 & 4 \\ 4 & 2 \end{bmatrix}$ 

Player A 
$$\begin{bmatrix} 0 & 4 \\ -4 & 3 \\ 2 & -5 \end{bmatrix}$$

### SECTION -C

# Answer any TWO questions.

 $(2 \times 20 = 40)$ 

19. Calculate first four central moments. Hence compute 1 and 2. Also comment upon the nature of the frequency distribution.

| Marks in        | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-60 |
|-----------------|------|-------|-------|-------|-------|-------|-------|-------|
| statistics      |      |       |       |       |       |       |       |       |
| No. of students | 18   | 22    | 30    | 42    | 40    | 38    | 22    | 14    |

20. a)A study of wheat prices at two cities yielded the following data:

|                    | City A   | City B   |
|--------------------|----------|----------|
| Average Price      | Rs 2,463 | Rs 2,797 |
| Standard Deviation | Rs 0.326 | Rs 0.207 |

Coefficientofcorrelation*r*is0.774.Estimatefromtheabovedatathemostlikely price of wheat *(i)*at City A corresponding to the price of Rs 2,334 at City B

(iiat city B corresponding to the price of Rs 3.052 at City A

b) The following distribution is relating to marks obtained by students in an examination. Find standard deviation.

| Marks           | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90- |
|-----------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
|                 |      |       |       |       |       |       |       |       |       | 100 |
| No. of students | 1    | 3     | 6     | 10    | 12    | 11    | 6     | 3     | 2     | 1   |

21. Find the seasonal indices by Ratio to Trend method from the data given below.

| Year | 1 <sup>st</sup> Quarter | 2 <sup>nd</sup> Quarter | 3 <sup>rd</sup> Quarter | 4 <sup>th</sup> Quarter |
|------|-------------------------|-------------------------|-------------------------|-------------------------|
| 2008 | 34                      | 54                      | 38                      | 38                      |
| 2009 | 36                      | 60                      | 52                      | 48                      |
| 2010 | 40                      | 58                      | 56                      | 52                      |
| 2011 | 52                      | 76                      | 64                      | 58                      |
| 2012 | 70                      | 90                      | 88                      | 84                      |

22. Obtain an Initial Basic Feasible Solution to the following transportation problem by

(i). North-West corner rule (ii) Least cost method and (iii) Vogel's approximation methods.

|             | D | E  | F  | G | Availability |
|-------------|---|----|----|---|--------------|
| А           | 6 | 4  | 1  | 5 | 14           |
| В           | 8 | 9  | 2  | 7 | 16           |
| С           | 4 | 3  | 6  | 2 | 5            |
| Requirement | 6 | 10 | 15 | 4 |              |

\*\*\*\*\*\*